“分子势能与体积”之我见

时间:2020-08-31 19:50:13 物理毕业论文 我要投稿

“分子势能与体积”之我见

气体的分子势能与体积
  有的书明确地说,气体的体积增大时,分子势能增大;有的书又说不是这样.究竟如何?
 “气体的体积增大时,分子势能增大”的主要论据是:气体分子间距离较大,分子的相互作用是吸引力;体积增大,则分子间距离增大,吸引力做负功,则分子势能增大.但这个论据靠不住:在同一时刻,气体中有一些分子对之间的分子间力表现为吸引力q,也有少数分子对的分子间力表现为排斥力Q,由于Q往往远大于q,因此后者未必是次要因素.
 实际上,在温度一定情况下,气体的体积较大幅度地增大时,分子势能略有增大、略有减小都是有可能的,取决于气体的种类和温度.
 焦耳在1845年做了一个实验:气体跟外界几乎无热交换,自由膨胀(不对外做功)体积加倍的过程中,测出气体的温度几乎不变.这意味着,一定数量的气体的内能几乎只与温度有关,而与体积无关.这意味着,气体的分子势能几乎与体积无关.
 焦耳和威廉·汤姆孙于1852年做了更精确的实验(李椿等《热学》163页,人民教育出版社1978年版),实验结果是,在气体的体积和压强的乘积PV与内能U这两者的和保持不变的某种膨胀过程中,气体的温度略有下降(比如降低1℃),或略有上升(比如上升1℃),依所用气体的种类和温度的不同而不同.我们来分析这个实验说明了什么.在观测到温度降低1℃的实验中,PV即使不按照克拉珀龙方程PV=nRT而减小,也会略微减小,注意到(PV+U)在实验中不变,可知U有所增大,这说明了存在“体积增大、温度降低,而内能增大”这种事实,从而说明了存在“气体体积增大时分子势能增大”这种事实.在观测到温度上升1℃的实验中,PV即使不按照克拉珀龙方程PV=nRT而上升,也会略微上升,注意到(PV+U)在实验中不变,可知U有所减小,这说明了存在“体积增大、温度上升,而内能减小”这种事实,从而说明了存在“气体体积增大时分子势能减小”这种事实.
 总之,气体的体积发生较大的变化时,气体总分子势能只发生少许变化;气体总分子势能随体积的增大而略微增大或略微减小,都是可能的.
 由于气体的分子势能,只与体积有微弱的关系,因此在理想气体模型的假设中可以包含下述假设:理想气体的分子势能不随体积的变化而变化,或者,一定数量的理想气体的内能是温度的函数.
 题目:如所示,容器A容器B以及连接两者的管道都是绝热的,原来容器A中装有气体,温度为T,容器B中为真空.打开阀门K,气体从容器A流向容器B,温度后温度为T′.
 (A)设容器中的气体为理想气体,则一定有T=T′
 (B)设容器中的气体为理想气体,则一定有T>T′
 (C)设容器中的气体为某种实际气体,则一定有T=T′
 (D)设容器中的气体为某种实际气体,则一定有T>T′
 
 图13-11
 解:气体从A流向B的过程中,不对外作功,又气体跟外界之间不发生内能转移,所以气体的内能不变.
 理想气体在状态变化中总分子势能无变化,因此理想气体的内能不变,意味着,总分子动能不变.而分子数未变化,所以分子平均动能不变,从而温度不变.至此可以肯定选项(A),否定选项(B).
 由于实际气体在上述变化中总分子势能可能增大、可能不变、可能减小.因此实际气体的内能不变时,总分子动能变小、不变、变大的可能性都是存在的,温度降低、不变、升高的可能性都是存在的.选项(C)(D)可以否定.
 本题四个选项只有(A)是对的.
  
 固体和液体的分子势能与体积
  对于固体或者液体来说,总分子势能的变化是否决定于体积的变化? 在压力一定的情况下,判断固体或液体分子势能的变化,只要看温度的变化,不必看体积的变化.
  先说说简谐振动.在光滑的水平面上,有两个相同的小球,小球的尺寸可不计,小球之间由自然长度为l的弹簧相连,拉开两球,使弹簧伸长x,放手,两小球作简谐振动.每当相距为l时,势能为零,动能达到最大值,每当相距为(l+x)和(l-x)时,动能为零,势能达到最大值.在一个周期内,在周期的整数倍时间内,动能的平均值等于势能的平均值.如果x比较大,那么动能的平均值和势能的平均值都比较大.
 氯化钠晶体中,每个氯离子,每个钠离子都在周围离子的分子力作用下做振动,比上述小球的振动复杂一些.在振动周期的整数倍时间内,每个离子拥有的平均势能跟拥有的动能应该相等或者有大致确定的“比例k”(请注意这个命题).温度升高时,大多数离子的.动能增大,那么大多数离子的分子势能也会增大.这样看来,晶体的温度升高,不但意味着离子平均动能增大,而且意味着离子平均势能增大.应当得出结论:晶体中粒子的势能与温度有密切关系.
 晶体中离子的振动一般不象弹簧振子那样具有完全的对称性,因此在振动的一个周期内,平均距离一般不等于平衡时分子间距离,振动的能量不同时,平均距离有所不同,每一对离子都是这样,这是热胀冷缩和“热缩冷胀”的原因;如离子的振动具有完全的对称性,那么物体就不发生热胀冷缩现象,这是一种理想情况.在理想情况中,分子势能(离子势能)是随温度的升高而增大,分子势能并没有因体积不变而不变;那么在实际情况中,分子势能随温度的升高而增大,不可以说是由于体积随温度变化而变化.
 液态水中,水分子除了偶尔做大范围的运动,在多半时间内,是在周围水分子施加的分子力作用下振动,因此,和氯化钠晶体类似,液态水中分子势能也是随着温度的升高而增大.
 因此可以理解,(在压力一定时)固体和液体随温度的升高,分子势能增大.
 所以,液态水,从0℃到100℃,(尽管体积随温度的升高不是单调变化)分子势能随温度的升高而单调增大.
 有的书上讲“分子势能与体积有关”,而且提这个命题的时候,不提分子势能与温度的关系.这个命题似乎是说,分子势能的变化主要与体积的变化有关,同一物体体积相等的两个状态,分子势能是大致相等的.这个命题是错误的;得到这个命题的那种推理过程是错误的.

【“分子势能与体积”之我见】相关文章:

1.跆拳道品势教程:站势

2.考研专业预测三“势”

3.跆拳道品势评分

4.跆拳道品势名称

5.跆拳道品势特技

6.跆拳道品势培训

7.跆拳道品势修炼

8.跆拳道品势竞技

9.跆拳道品势口令